
UJX 531.36 

ON THE STIFFNESS PROPERTY OF MOTION 

PMM Vo1.42, I$ 3, 1978,pp. 407 -414 
V.N.SKIM!ZL’ 

( Kazan * 1 
( Received August 1,1977 ) 

It is well known that the axis of a rapidly rotating gyroscope is very little responsive 

to large perturbing forces , i. e. , possesses stiffness [ 11. It was noticed that 
under specific conditions the stiffness property is inherent in systems with gy- 

roscopes [ 2 1. Many mechanical systems possess a property skin in some sense 
to gyroscopic stiffness. In this paper stiffness is interpreted as a distinctive 

stability. Theorems establishing tests for stiffness, analogous to the theorems 

of Liapunov’s direct method , are formulated. The stiffness property is des- 
cribed by using a separation of variables as is done in problems on stability 
with respect to a part of the variables (see [ 3,4 I, etc. ) . Individual questions 
on the stiffness of motion were examined in [ 5,6 I. 

1. B a 8 i c d e f i n it f on 6. The equations of motion of a mechanical system are 
written as 

dyldt = Y (t, y, g) (1.1) 

where t>O istime, y isan n -dimensional state vector of the system and c is 
a constant vector-valued physical parameter. The motions (partial solution of (1.1) > 

y = f (t* Yo, d (1.2) 

from some family ,satisfying the initial conditions: Y = Yo when t = to, are 
considered to be the unperturbed motions. It should be noted that the values of yo and 

of parameter &’ can be related by the existence conditions for the motions (1.2 ) . 
Setting Y = f + LC in (1.1) , we obtain the equation of perturbed motion 

dxldt = Y (t, f + x, g) - Y (h ft d (1.3) 

in which Ye and g are parameters. Equation (1.3 ) is considered dependent upon 
parameters a,, . . . , 4. essential to the motion stiffness problem and is written as 

dxldt = X (t, x, a), X (t, 0, a) = 0 (1.4) 
a = (a,, . . .) a,) 

We shall investigate the stiffness of the motion 5 = 0 with respect to a part of the 

variables xa(a = 1, . . ., m; m< n). We assume that the vector-valued func- 

tion X (t, b, a) in (1.4) is continuous and satisfies the uniqueness conditions for the 
solution in the domain 

r,={x:1~~I<H,(xpI<oo(a=1,..., m;i3=m+1,... (1.5) 

-, 4h t > t* 
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forall a q> L>, where D is some domain in the space of the parameters being ex- 
amined l We denote the solution of (I. (I ) by 5 ft9 t,, x0, a) and in the space of 

variables {xi, , . . , r,J : we introduce a parallelepiped defined by the inequalities 

_ *- 
11, ~{5:ptL~.s&, [ xp 1 < et), n* 7 {x : 1 XE 1 +-; 8l< 61 (1.6) 

I”pI+%<%) 

the set of boundary points is denoted 2 \ 11 in what follows _ 

Definition 1. Motion z = 0 possesses stiffness with respect to variables zu 
if for any numbers e1 > 0 and 6a > 0 (the first can be arbitrarily small, the 
second, arbitrarily large) and for an instant to > t* we can find a parameter a* rz B 
and numbers e2 > 0 and 8X >+O defining domain (1, C;), for whichx (t, t,, xer 

a*> E II when t > &j if only x0 c’ .: &. The stiffness is said to bt uniform 

in t0 if ‘a*, ~a and e1 do not depend on t, 

Definition 2. M_otion 5 -: 0 pcesesses strong stiffness with respect to vari - 
ables za, and domain n, lies in its domain of attraction, if it possesses stiffness with 
respect to these variables and, in addition, the condition 

tim 2 (t, ta, q, a”>: zz 0, -28 f 1x6 
t-Kc 

holds. 
Ifin Definition 1 we set cr 1 82 -: 8 and 6, ;- 62 -- 6, we obtain a property 

of the motion I close to the practical stability discussed in C 5’1, Using this terminology, 

ze arrive at the following defi~~on: we denote If z 11 -= max (1 51 I)* 

Definition 3. Motion x = 0 posswes practical stability if for any 8 > 0 
and instant to > t* we can find a parameter a* E D and a number 4 > 0. 

for which I( R: (t, t,, SO, a*) 11 <a when t > t, if only 11 fg II< 6. 
A motion ‘s stiffness and its stability (also with respect to a part of the variables) 

are f in general I independent properties of the motion ‘ 

Example 1. Stiffacrr of a gyrorcope*u axis in the Euler C&EC. 
As is customary let OZYZ be the principal axes of inertia at the fastening point, A 

= B and C are the corresponding moments of inertia. ‘IJo describe the motion we 
use the variablea%~yt, YS, p, q and r% where the yi are the cosines of the angles for- 

med by some fixed axis zr with the axes 5% Y and z f respectively, In the unper~rbed 

motion we set 

(I.71 

f1.8) 

(1.9) 
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We shall examine stiffness with respect to the variables rla (a =: 1, 2, 31, taking 
a = o. Turning to Definition 1 we note that regarding relation (1.9) it is convenient 

to use the domains (P-1,2,3) 

?j, = {Z: Tl? + ‘Iha <RI2 < 1, ?b < 1 -. 1/l - El’ < 8,; ( $ 1 < E?} (1.10) 

instead of (1.6 ). We specify the numbers Ed < 1 and 6, and we first consider the 
perturbed motions under the initial conditions 

s,= 9, I E,, I d 82 (1.11) 

In the perturbed motion the gyroscope’s axis z, which coincides with the axis 21 at the 
initial instant, describes a circular cone around the vector L of the moment of mom - 
entum ; the angle at the cone’s apex is 29, where 

sin 6 = dojo IL, oso = (Sto2 _t &o~)f~*, L = (XJwlo2 + p,2)% 

Hence ~0s 28 < y3 (t) < 1; consequently (see (1.8 ) ), qr < 1 - cos 29 or 

rla d 2 (A%0 / -v (1.12) 

We now select the magnitude ! al- to make the condition ills -!- r1z2 < %s bold for 
the perturbed motions from (1.11) being examined ; then q3 < 1 - If1 - e,a. 
Bearing (1.12 ) in mind, we set 

2 (-4% /L)“< I-- vq 

whence follows the inequality 

From the constancy of the gyroscope’s kinetic energy it follows that If& I < @2 if 

Ess > IQ%. Thus the inequalities rlIa + %? < e12 and I 4, I < EZ hold for the 
perturbed motions with initial conditions (1.11) when t > to if the parameters value 
satisfies (1.13 ). However, we can be persuaded that 61 exists, dependent on the para- 
meter’s value chosen by (1,13 ) , so small that the inequali~ holds even for rlro’ i- 

%* < V and I E,, I Q 6,. 

2. Application of the Lfapunov function method to the motfon 
stiffnerr problem. 1’. We examine real single-valued functions u = n (t, 3, b) 
which, in general, depend on a part b = (al, . . . , a& p < r, of the variables con- 
tained in (1.4). We assume that functions v have been defined and are continuous to- 
gether with the derivatives &> / at and dv / a$, (S = 1, . . . n) in the domain 

r={=I%(,<h<K I”&+Q}Cro, t>t*, bED1 (2.1) 

Definition 4. Function If (Z, b) possesses property (d) With respect to XCZ if 

for any 8x cz (0, h) and 6s > 0 wecan find b* E DI, es > 0 and 8x > 0, 
depending on them for which 

(2.2) 
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Function U (t, s, b) possesses property (A) if in domain (2.1) 

V ft, z, b) > ut (X, b) (2.3) 

and for every aI, 8s and to > t* there are b*, eX and 6, for which 

inf [w (x, b*j : x 53 E~\l-r,] > sup [v (to, cc1 b “) : z rr E,] (2.4) 

Function u (t, 5, r,) possesses property (A) uniformly in G E it*, ~3 ) if in domain 

(2.1) 
w (x, b) > v (t, 2, b) > w (2, b) 

and for every E, and Sa there are b*, EZ and 61 for which 

(2.5) 

(2.6) 

Having denoted r~ = max (1 X~ fj and r2 = max (1 x0 I), we consider the 
domain GE = (5: 0 < rl < E! 0 < ra ( 00 j and its boundary point set R, = 

{ 5: 1”r = E,O\(Q<~) forsome;ee (0,h) . 

Lemm a. For the lfunction L’ fX, b, to possess property (Af with respect to% 
it is sufficient that the following conditions be fulfilled : 

a) U=V*(Q) if 5~ = 0; 

b) for ay arbitrarily small E> 0 and large &f > 0 there exists a parameter 

b* E Dr for which jnf u (x, b*f > &f on the set 2 E R,; 

c) v(s,b)-++- 8 rz-++oo uniformly relative to XUZ in domain&. 

Pro of. Let us show that domains E,, and li, for which inequality (2.2 1 is 
fulfilled can be constructed for functions satisfying the Lemma’s hypotheses. Indeed, 
let &I and 6, be specified. Then 

sup [2; (I, b) : z:, = 0, 1 yj 1 G %I = M (6,) 

We select b+ E.D, as to have 

irlf 1: ts, r’+j > M (S,), 2 E R,, 

We can find ea > 6,, large enongh to make 

inf [?I (2, b*) : 2 E iTE\IT,] > M (6,) 

Finally, because the function 
defining fis 

2!(2,8*;) is uniformly continuaus , a sufficiently small6, 
in (2‘2 ) exists in the domain ze , 

Function U (t, x, b) obviously possesses property (‘A) if u - V* (t, C-Q) 
when X~ = 0 and a function w (z, b) satisfying (2.3 1 and the Lemma’s hypotheses 
exists. If functions UJ (5, b) and w (z, 6) satisfying C 2.5 > and the Lemma’shypotheses 

exist, then function u ft, x, b) p~~s~property (A) u~fa~ly in t C=J f t* , oo >. 

Note 1. Weset a1 = &s = E and 6, = 6s = 6. We say that a function 

Z? (5, b) that for this casesatisfiescondition (2.2 1 in Definition 4 possesses property (a). 
According to the Lemma we can conclude that v {x, b) possesses property (B) 

if u (()? b) G r) and for every E (no matterhow small 1 there exists b* for which 
jnf [v (;c, b”): 11 2 /I = ~1 >. 0. 
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2 O. Some indications of motion stiffness. Theorem 1. If for sys- 
tem (1.4): 

a 1 there exists a function u (t, 5, 6), possessingproperty (A) withrespectto x~; 
b ) function u and its derivative 1)’ (by virtue of system (1.4) ) satisfy the con - 

dition : for every ar, 6s and t, > t* specified in advance one can find a* E 

D, ~2. and 6i for which v’ (t, 2, a*) Q 0. holds together with (2.4) for all 
t > to and 5 E n,, then the motion x = 0 possesses stiffness with respect to x~. 

Pro o f. Assume that the theorem ‘s hypotheses are fulfilled : the parameter a* 
has been defined and the domains if, and E, have been constructed for arbi -. 

trary a~, 6s and t, . Then the solution z (t, to, x0, a*) E II, if only x0 E j&. 
AS a matter of fact, arguing otherwise, we assume that when a = a* a solution II: (t) 
exists reaching the boundary of & at an instant tl > t(, notwithstanding that the 

condition x,, E a6 obtains at t =I t, . Since solution 5 (t) E B, when t E 
[to, tll, function u does not grow along it: consequently, n (tr, 2 (tr), b*) < ZJ 

(to9 x0* b*), which contradicts (2.4 ) , The motion x = 0 possesses the stiffness property, 

Corollary 1. if a function u (t, x, b) possessing property (A) with respect 
to xa exists and V’ (t, 5, a) < 0 forall t>t*,LZ:Er and aED, then 

motion x = 0 possesses stiffness with respect to xu. 

Theorem 2. If for system (1.4 ) : 
a) there exists a unction Y (t, 2, 6) possessing property {A) with respect to 

xG uniformly in t E It*, 00); 
b ) function V and its derivative z?’ satisfy the condition: for every ai and 62 

specified in advance one can find a* E u, ~2 and 6, for which v' (t, 5, a*) < 0 
holds together with (2.6) for all t ‘2 t* and x E 0, \ n,, then the motion 

2 = 0, possesses stiffness with respect to za uniformly in to e [t*, 03). 

Pro of , Arguing to the contrary, we assume that when a = a* a solution x (t) 

(x (to) = x0* x0 E fib, to > t*) exists reaching the boundary of i_L. at an instant 

tl > to. Let t’ (to < t’ < tx) be an instant for which 5 (t’) E I&, \ Da 
and let x (t) E % \ n, if t E It’, t,l . Function U does not grow along 
solution x (t) on the time interval indicated and ,therefore , v (tl, x ( tl), b* f < u 
(t’, x (t’), b’). The latter contradicts condition (2.6). Consequently, x (t) e & 

if &, ex,,and to> t*. 

Theorem 3. If for system (1.4): 
a) a function u (t, x, b) exists possessing property (A) with respect to xa 

and admitting of an infinitesimal upper bound at x = 0 ; 
b) function u and its derivative n’ satisfy the condition : for every ai, 8s and 

to > t* specified in advance we can find a* E D, es and & for which (2.4) 

is fulfilled and v(t, x, b*) is positive definite in domain Ke when t > t, while 

V’ (t, 5, a*) is negative definite, then the motion x = 0 possesses strong stiffness 

with. respect to G. 

Pro of. Function u and its derivative u* satisfy the hypotheses of Theorem 1 and 
so the motion x = 0 possesses stiffness with respect to x=. Consequently I every solu- 

tion z (t, to, x0, a*) E n, when t > t, if x0 E i&. It remains to show 
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that X (t, to, X0, a*) -+ 0 as t -+ 00. The latter can be established by using, say, 

the proof scheme of Theorem II in [ 7 1, 

Corollary 2. If a function ?I (t, 2, b) exists that possesses property (A) with 
respect to %x, is positive definite and admits of an infinitesimal upper bound at x = 0, 
while v’ (t, x, a) is negative definite for all t> t*, xE~ and aED, then 
the motion z = 0 possesses strong stiffness with respect to x~. 

N o t e 2. Theorem 1 can be extended to practical stability if functions possessing 
property (B) are used. 

3 O. We consider system (1.4 ) under constantly acting perturbations 

dX/dt = X (t, X, a) + p.B (t, x, a) (p = const. > 0) (2.7 1 

We remark that the need for investigating similar systems with a small parameter F 
arises, for instance, in the theory of oscillations and in other problems. Besides the usual 
requirements on the functions R, (t, G a) (s - 1, . . . , n), we shall assume their 
uniform boundedness in each domain Re c r. from(l.5) when t > t*. 

Motion I(: = 0 possesses stiffness with respect to Xa constantly acting perturba- 
tions if for any El, 62 and to we can find a* and II* depending on them and 

E2 and 61, defining domain (1.6) for which the solution of (2.7 ) x (t, to, 20, a*, 

CL*) E I& (t > to), if only x0 E &, for any function R,. 
Let us assume that a function u (t, 3, b) satisfying the hypotheses of Theorem 

2 has been constructed for system (1.4)) with the following additions: U’ (t, X, a*).= 

-2 (1 = const > 0), z E a8 \ I&, t > t*, and the derivatives 8~ (t, 5, b* ) 

/&z,(s= 1, .- -7 n) are uniformly bounded in domain II,. when t >, t*). 
Then the motion x = 0 possesses stiffness under constantly acting perturbations. 

Indeed, the motion 5 = 0 of system (1.4) possesses stiffness with respect to za 

uniformly in t,, E. [t*, CO). We assume that parameter (I* has been fixed and the 
domains n, and flA for which (2.6 ) holds have been constructed, and also that 

v’ (t, I, U*) < - 1 (z E ii8 \ “6, t > t*. In addition, 1 %I (t, ET, b*) / az, 1 < N 

and 1 R, (t, 5, a*) I <M. We set up the expression for the derivative of function 

c (t, X, b*) by virtue of system (2.7 ) . We obtain 

whence it follows that if 5 E fi8 \ II&, t > t*, then 

2)’ (t, I, a*, pr@;) < - 1 -I- pnNM 

and 2)’ (t, 5, a*, P*)tz.,) < o for p*<llnNM. The latter signifies that the 

solution of system (2.7 ) with initial conditions x,, E Eb and t,, > t* do not leave the 
domain ne for r > IO 

As we can see the theorems presented are in a known sense the analogs of motion 
stability theorems. Indications of nonstiff motion, which we do not discuss here, can 
be established in similar fashion. 
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Example 2. Stiffness of a vertically rectified Lagrange gy- 
I OS c o p e . For the axis 21 directed vertically upward the unper~rbed motion corres- 

ponds to the values (1.7 ) of the variables, while the perturbed motion, to (1.8 ) . Since 

variable ‘1s can be expressed in terms of % and Q. (see (1.9) 1, the equations of 

perturbed motion, depending on parameter r , can be written for the variables & and 
T)i (i = 1, 2). Using the Lagrange integrals for the equations of motion, we can write 

the integrals of perturbed motion 

here I is the coordinate of the center of gravity. 

Let us consider the bundle of integrals (2.8 > 

V (z, r) = ttl - hoa = A (ES* + ES’) - ‘4. (Ems + E&t) + (2.9). 

(hf.3 - 2VP) rls 

where A is a constant not determined as yet. Let us show that the function v in (2.9) 
possesses property (4 with respect to ‘12 and q *, satisfying the hypotheses of the 

Lemma presented above ‘ For this purpose we make the required constructions, using 

domains (1.10 1. 
Let 8, < 1 and 6, be given. Since y* (E) = A (El8 + EPa), 

M = sup IV (2, r): ‘I1 = qa = 0, 151 I < 62, I Ea I % &I = 2&= 

On the set qP + qa2 = tsf the unction v has the mtnimum 

min 21 = (Wr - 2mgz) (1 - jfTZQ) - % &.%,a (2.10) 

depending on the bundle ‘s parameter A. Having chosen the magnitude of this para- 
meter from the condition that expression (2.10 1 be maximum, we obtain 

max min v = Csra (1 - v/1 - cl”)* j AS? - 2ngz (I- Jfq) (2.11) 

We require that max min v > M. In accord with (2.11) we obtain the following con- 

dition for choosing the magnitude of parameter r: 

@rs> 2AE,2f~~a+- mgz (1 - jfi -sly] /(I - $4 -e&S (2.12 1 

Function (2,9 1 satisfies the last condition of the Lemma. Indeed, u (2, r) cs + 03 

as 512 + E*’ + OQ uniformly in the domain Q + qz2 \c et. 

Having now set r = o + Es (2.121, where I Es I < SI, we obtain 

We note that the numbers 6, and e, defining for the variables & and qi (i = 1, 2) 
the domains (I, 10) depend on Es. Keeping in mind that I &, I < i!&, we can take 
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6r = inf 6, (Es) and es = sup Ea 
tegral of the equations of per%rbed 

(Es). Thus the Eunction 1’ of (2.9)) being an in - 
motion, possesses property (.4) with respect to rll 

and Q. Then by Corollary 1 we can deduce that motion (1.7 ) possesses stiffness with 

respect to these variables. 
In concluding the analysis of the example we note that (2.13 ) becomes (1.13 ) 

when z= 0 . It can also be shown that (2. 12 ) is fulfilled for sufficiently small e, 
and 6, if the stability condition C%$ > 4 Amgz [sJ holds. Indeed, assuming that 

s~/E~-_, 0 as er--+ 0, we get that the limit of the right-hand side of (2 .13 ) 

equals 4Amgz. 

Example 3. Property of stiffness - equilibrium of a conservative 
system. The equilibrium position of a system subject to holonomic and stationary 
constraints is determined by the generalized coordinates Qi (i = i,. . ., nf . We consider 

the case when the system’s potential energy II = II (ql,. . ., q,,, a,,. . ., ar) depends 
upon parameters and we assume that pi = C <is an isolated equilibrium position for 
each a E D l We assume that II (0, a) = 0. We denote 

rp (E, a) = inf [II (q, a) : q E K, \ X,1, Ee = {q: I qi I <eI 

where e is sufficiently small. 
The equilibrium position 4 = 0 possesses stiffness with respect to the coordinates 

if for any positive e and N (the first arbitrarily small, the second , arbitrarily large ) 

a parameter a* E D depending on them exists for which q (e, a*) > N. Indeed, 

under the assumptions made the system’s total energy 

n 

possesses property (A) with respect to (I, having satisfied the Lemma’s conditions. 

Since by virtue of the equations of motion D’ s 0, integral v satisfies the hypotheses 

of Corollary 1. 
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